Skip to main content

Open Access Cardiomyoplasty Improves Contractile Reserve After Myocardial Injury in Mice: Functional and Morphological Investigations With Reconstructive Three-Dimensional Echocardiography

Download Article:
(HTML 50.888671875 kb)
(PDF 5102.388671875 kb)
Cellular cardiomyoplasty (CMP) is a novel therapeutic approach to myocardial injury (MI). Post-MI remodeling of the left ventricle (LV) comprises dilatation and impairment of systolic function and gives rise to progressive hemodynamic deterioration. We aimed to investigate: a) the impact of CMP on global and regional parameters of LV remodeling (LVR) as well as contractile reserve and b) the suitability and validity of different echocardiographic methods in this scenario. Murine ventricular cardiomyocytes (E13.5‐E16.5) were transplanted into cryolesioned hearts of male HIM-OF1 mice. Echocardiography was performed at rest 4 and 14 days postoperatively. For quantification of akinetic myocardial mass and contractile reserve 2 weeks postoperatively additionally low-dose dobutamine stress echocardiography was conducted. Reconstructive 3D-echocardiography (r3D-echo) was compared to “plain” echocardiographic investigations and was compared to invasive measurements with conduction catheter. CMP significantly attenuated LV dilatation and reduced LV function decline on day 14, as obtained with all echocardiographic modalities and confirmed with conduction catheter measurements. In contrast to plain echocardiography and invasive testing, r3D-echo allowed noninvasive quantification of scar size and assessment of regional contractile reserve. Cell transplanted hearts demonstrated a significant decrease of akinetic myocardial mass (−CMP: 13 ± 2%; +CMP 7 ± 1%; p < 0.001) and increased regional contractile reserve, an indirect sign of myocardial viability. The present study demonstrates beneficial effects of CMP on global and regional parameters of LVR and contractile reserve after MI. In contrast to “simple” 2D echocardiography, r3D-echo allowed the assessment of regional contractile reserve and quantification of akinetic myocardial mass as additive functional and morphological measures of LVR.

13 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Cellular cardiomyoplasty (CMP); Echocardiography; Left ventricular remodeling (LVR); Myocaridal injury

Document Type: Research Article

Affiliations: Department of Medicine—Cardiology, University of Bonn, Bonn, Germany

Publication date: 2011-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more