Skip to main content

Combination of Multifaceted Strategies to Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Spinal Cord Repair

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Neural stem cells (NSCs) possess therapeutic potentials to reverse complex pathological processes following spinal cord injury (SCI), but many obstacles remain that could not be fully overcome by NSC transplantation alone. Combining complementary strategies might be required to advance NSC-based treatments to the clinical stage. The present study was undertaken to examine whether combination of NSCs, polymer scaffolds, neurotrophin-3 (NT3), and chondroitinase, which cleaves chondroitin sulfate proteoglycans at the interface between spinal cord and implanted scaffold, could provide additive therapeutic benefits. In a rat hemisection model, poly(ɛ-caprolactone) (PCL) was used as a bridging scaffold and as a vehicle for NSC delivery. The PCL scaffolds seeded with F3 NSCs or NT3 overexpressing F3 cells (F3.NT3) were implanted into hemisected cavities. F3.NT3 showed better survival and migration, and more frequently differentiated into neurons and oligodendrocytes than F3 cells. Animals with PCL scaffold containing F3.NT3 cells showed the best locomotor recovery, and motor evoked potentials (MEPs) following transcranial magnetic stimulation were recorded only in PCL-F3.NT3 group in contralateral, but not ipsilateral, hindlimbs. Implantation of PCL scaffold with F3.NT3 cells increased NT3 levels, promoted neuroplasticity, and enhanced remyelination of contralateral white matter. Combining chondroitinase treatment after PCL-F3.NT3 implantation further enhanced cell migration and promoted axonal remodeling, and this was accompanied by augmented locomotor recovery and restoration of MEPs in ipsilateral hindlimbs. We demonstrate that combining multifaceted strategies can maximize the therapeutic benefits of NSC transplantation for SCI. Our results may have important clinical implications for the design of future NSC-based strategies.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chondroitinase ABC; Motor evoked potential; Neurotrophin 3; Spinal cord injury (SCI); Stem cells; Tissue scaffold (Pclf polymer)

Document Type: Research Article

Affiliations: Brain Disease Research Center, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea

Publication date: 01 September 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more