Skip to main content

Open Access Transplantation of Rat Synapsin-EGFP-Labeled Embryonic Neurons Into the Intact and Ischemic CA1 Hippocampal Region: Distribution, Phenotype, and Axodendritic Sprouting

Download Article:
(HTML 90.2 kb)
(PDF 16,064.2 kb)
A major limitation of neural transplantation studies is assessing the degree of host‐graft interaction. In the present study, rat hippocampal/cortical embryonic neurons (E18) were infected with a lentivirus encoding enhanced green fluorescent protein (GFP) under control of the neuron-specific synapsin promoter, thus permitting robust identification of labeled neurons after in vivo grafting. Two weeks after transient forebrain ischemia or sham-surgery, GFP-expressing neurons were transplanted into CA1 hippocampal regions in immunosuppressed adult Wistar rats. The survival, distribution, phenotype, and axonal projections of GFP-immunoreactive (IR) positive transplanted neurons were evaluated in the sham-operated and ischemia- damaged CA1 hippocampal regions 4, 8, and 12 weeks after transplantation. In both experimental groups, we observed that the main phenotype of host-derived afferents projecting towards grafted GFP-IR neurons as well as transplant-derived GFP-IR efferents were glutamatergic in both animal groups. GFP axonal projections were seen in the nucleus accumbens, septal nuclei, and subiculum—known target areas of CA1 pyramidal neurons. Compared to sham-operated animals, GFP-IR neurons grafted into the ischemia-damaged CA1 migrated more extensively throughout a larger volume of host tissue, particularly in the stratum radiatum. Moreover, enhanced axonal sprouting and neuronal plasticity of grafted cells were evident in the hippocampus, subiculum, septal nuclei, and nucleus accumbens of the ischemia-damaged rats. Our study suggests that the adult rat brain retains some capacity to direct newly sprouting axons of transplanted embryonic neurons to the correct targets and that this capacity is enhanced in previously ischemia-injured forebrain.

75 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Axonal projection; Green fluorescent protein (GFP); Hippocampus; Ischemia; Neuronal transplantation; Rat

Document Type: Research Article

Publication date: 01 August 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more