Skip to main content

Open Access NUP98-HOXA10hd-Expanded Hematopoietic Stem Cells Efficiently Reconstitute Bone Marrow of Mismatched Recipients and Induce Tolerance

Download Article:
(HTML 51.9990234375 kb)
(PDF 2417.4951171875 kb)


Gene therapy as well as methods capable of returning cells to a pluripotent state (iPS) have enabled the correction of genetic deficiencies in syngenic adult progenitors, reducing the need for immunosuppression in cell therapy approaches. However, in diseases involving mutations that lead to the complete lack of a protein, such as Duchenne muscular dystrophy, the main immunogens leading to rejection of transplanted cells are the therapeutic proteins themselves. In these cases even iPS cells would not circumvent the need for immunosuppression, and alternative strategies must be developed. One such potential strategy seeks to induce immune tolerance using hematopoietic stem cells originated from the same donor or iPS line from which the therapeutic progenitors are derived. However, donor hematopoietic stem cells (HSCs) are available in limiting numbers and embryonic stem (ES) cell-derived HSCs engraft poorly in adults. While these limitations have been circumvented by ectopic expression of HOXB4, overexpression of this protein is associated with inefficient lymphoid reconstitution. Here we show that adult HSCs expanded with a NUP98- HOXA10hd fusion protein sustain long-term engraftment in immunologically mismatched recipients and generate normal numbers of lymphoid cells. In addition, NUP98-HOXA10hd-expanded cells induce functional immune tolerance to a subsequent transplant of myogenic progenitors immunologically matched with the transplanted HSCs.

Keywords: Chimerism; HOXA10; Hematopoietic stem cell (HSC) and myoblast transplantation; Tolerance

Document Type: Research Article


Affiliations: Department of Medicine, The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada

Publication date: 2011-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more