Skip to main content

Open Access Collagen IV Significantly Enhances Migration and Transplantation of Embryonic Stem Cells: Involvement of α2β1 Integrin-Mediated Actin Remodeling

Download Article:
(HTML 87.4 kb)
(PDF 1,918.3 kb)


Embryonic stem (ES) cell transplantation represents a potential means for the treatment of degenerative diseases and injuries. As appropriate distribution of transplanted ES cells in the host tissue is critical for successful transplantation, the exploration of efficient strategies to enhance ES cell migration is warranted. In this study we investigated ES cell migration under the influence of various extracellular matrix (ECM) proteins, which have been shown to stimulate cell migration in various cell models with unclear effects on ES cells. Using two mouse ES (mES) cell lines, ESC 26GJ9012-8-2 and ES-D3 GL, to generate embryoid bodies (EBs), we examined the migration of differentiating cells from EBs that were delivered onto culture surfaces coated with or without collagen I, collagen IV, Matrigel, fibronectin, and laminin. Among these ECM proteins, collagen IV exhibited maximal migration enhancing effect. mES cells expressed α2 and β1 integrin subunits and the migration enhancing effect of collagen IV was prevented by RGD peptides as well as antibodies against α2 and β1 integrins, indicating that the enhancing effect of collagen IV on cell migration was mediated by α2β1 integrin. Furthermore, staining of actin cytoskeleton that links to integrins revealed well-developed stress fibers and long filopodia in mES cells cultured on collagen IV, and the actin-disrupting cytochalasin D abolished the collagen IV-enhanced cell migration. In addition, pretreatment of undifferentiated or differentiated mES cells with collagen IV resulted in improved engraftment and growth after transplantation into the subcutaneous tissue of nude mice. Finally, collagen IV pretreatment of osteogenically differentiated mES cells increased osteogenic differentiation-like tissue and decreased undifferentiation-like tissue in the grafts grown after transplantation. Our results demonstrated that collagen IV significantly enhanced the migration of differentiating ES cells through α2β1 integrin-mediated actin remodeling and could promote ES cell transplantation efficiency, which may be imperative to stem cell therapy.

Keywords: Collagen IV; Embryonic stem (ES) cells; Extracellular matrix (ECM); Integrins; Migration; Transplantation

Document Type: Research Article


Affiliations: Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan

Publication date: June 1, 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more