Open Access

Tumorigenic Development of Induced Pluripotent Stem Cells in Ischemic Mouse Brain

Authors: Yamashita, Toru; Kawai, Hiromi; Tian, Fengfeng; Ohta, Yasuyuki; Abe, Koji

Source: Cell Transplantation, Volume 20, Number 6, June 2011 , pp. 883-891(9)

Publisher: Cognizant Communication Corporation

Buy & download fulltext article:

Open Access The full text is Open Access.

View now:
HTML 48.1kb 
or
PDF 1,776.7kb 

Abstract:

Induced pluripotent stem (iPS) cells may provide cures for various neurological diseases. However, undifferentiated iPS cells have high tumorigenicity, and evaluation of the cells fates, especially in pathologic condition model, is needed. In this study, we demonstrated the effect of ischemic condition to undifferentiated iPS cells fates in a mouse model of transient middle cerebral artery occlusion (MCAO). Undifferentiated iPS cells were characterized with immunofluorescent staining. The iPS cells (5 × 105) were injected into ipsilateral striatum and cortex after 24 h of MCAO. Histological analysis was performed from 3 to 28 days after cell transplantation. iPS cells in ischemic brain formed teratoma with higher probability (p < 0.05) and larger volume (p < 0.01) compared with those in intact brain. Among the four transcriptional factors to produce iPS cells, c-Myc, Oct3/4, and Sox2 strongly expressed in iPS-derived tumors in ischemic brain (p < 0.01). Additionally, expression of matrix metalloproteinase-9 (MMP-9) and phosphorylated vascular endothelial growth factor receptor2 (phospho-VEGFR2) were significantly increased in iPS-derived tumors in the ischemic brain (p < 0.05). These results suggest that the transcriptional factors might increase expression of MMP-9 and activate VEGFR2, promoting teratoma formation in the ischemic brain. We strongly propose that the safety of iPS cells should be evaluated not only in normal condition, but also in a pathologic, disease model.

Keywords: Cell transplantation; Cerebral ischemia; Induced pluripotent stem (iPS) cells; Tumorigenesis

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368910X539092

Affiliations: Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Publication date: June 1, 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page