Skip to main content

Open Access High Vascular Density and Oxygenation of Pancreatic Islets Transplanted in Clusters Into Striated Muscle

Download Article:
 Download
(HTML 42.10546875 kb)
 
or
 Download
(PDF 5748.0478515625 kb)
 
Pancreatic islet transplantation is presently almost exclusively performed using the intraportal route for transplantation into the liver. However, islets at this site are poorly revascularized and, when also considering the poor long-term results of clinical islet transplantation, there has in recent years emerged an increased interest to evaluate alternative sites for islet transplantation. Striated muscle is easily accessible and has for decades been used for autotransplantation of parathyroid glands. Moreover, it is almost the only tissue in the adult where physiological angiogenesis occurs. The present study tested the hypothesis that striated muscle would provide good conditions for revascularization and oxygenation of transplanted islets. Because we previously have observed similar revascularization of islets implanted to the renal subcapsular site and intraportally into the liver, islets grafted to the kidney were for simplicity besides native islets used for comparison. Islets grafted into muscle were found to have three times more blood vessels than corresponding islets at the renal subcapsular site at 2 month follow-up, but still less vascular numbers than native islets. The oxygen tension in 2-month-old intramuscular islet grafts was sixfold higher than in corresponding renal subcapsular grafts, and 70% of that in native islets. However, the oxygenation of surrounding muscle was only 50% of that in renal cortex, and connective tissue constituted a larger proportion of the intramuscular than the renal subcapsular grafts, suggesting exaggerated early islet cell death at the former site. We conclude that the intramuscular site provides excellent conditions for vascular engraftment, but that interventions to improve early islet survival likely are needed before clinical application. Such could include bioengineered matrices that not only spatially disperse the islet, but also could provide local supply of oxygen carriers, growth and survival factors, strategies that are much more easily applied at the intramuscular than the intrahepatic site.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Angiogenesis; Engraftment; Islet graft; Muscle; Oxygenation

Document Type: Research Article

Publication date: 2011-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more