Skip to main content

Open Access Augmenting Therapy of Ovarian Cancer Efficacy by Secreting IL-21 Human Umbilical Cord Blood Stem Cells in Nude Mice

Download Article:
 Download
(HTML 73.8271484375 kb)
 
or
 Download
(PDF 1210.9013671875 kb)
 

Abstract:

In the present study, CD34+ human umbilical cord blood stem cells (UCBSCs) were engineered to express interleukin-21 (IL-21) and then were transplanted into A2780 ovarian cancer xenograft-bearing Balb/c nude mice. The therapeutic efficacy of this procedure on ovarian cancer was evaluated. The findings from the study indicated that UCBSCs did not form gross or histological teratomas until up to 70 days postinjection. The CD34+ UCBSC-IL-21 therapy showed a consistent effect in the ovarian cancer of the treated mice, delaying the tumor appearance, reducing the tumor sizes, and extending life expectancy. The efficacy was attributable to keeping CD34+ UCBSC-IL-21 in the neoplastic tissues for more than 21 days. The secreted IL-21 not only increased the quantity of CD11a+ and CD56+ NK cells but also increased NK cell cytotoxicities to YAC-1 cells and A2780 cells, respectively. The efficacy was also associated with enhancing the levels of IFN-γ, IL-4, and TNF-α in the mice as well as the high expressions of the NKG2D and MIC A/B molecules in the tumor tissues. This study suggested that transferring CD34+ UCBSC-IL-21 into the nude mice was safe and feasible in ovarian cancer therapy, and that the method would be a promising new strategy for clinical treatment of ovarian cancer.

Keywords: Gene therapy; Interleukin-21; Ovarian cancer; Umbilical cord blood stem cells (UCBSCs)

Document Type: Research Article

DOI: https://doi.org/10.3727/096368910X536509

Publication date: 2011-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more