Skip to main content

Open Access Potential of Skin Fibroblasts for Application to Anterior Cruciate Ligament Tissue Engineering

Download Article:
(HTML 47.2001953125 kb)
(PDF 8110.5146484375 kb)
Fibroblasts isolated from skin and from anterior cruciate ligament (ACL) secrete type I and type III collagens in vivo and in vitro. However, it is much easier and practical to obtain a small skin biopsy than an ACL sample to isolate fibroblasts for tissue engineering applications. Various tissue engineering strategies have been proposed for torn ACL replacement. We report here the results of the implantation of bioengineered ACLs (bACLs), reconstructed in vitro using a type I collagen scaffold, anchored with two porous bone plugs to allow bone‐ligament‐bone surgical engraftment. The bACLs were seeded with autologous living dermal fibroblasts, and grafted for 6 months in goat knee joints. Histological and ultrastructural observations ex vivo demonstrated a highly organized ligamentous structure, rich in type I collagen fibers and cells. Grafts' vascularization and innervation were observed in all bACLs that were entirely reconstructed in vitro. Organized Sharpey's fibers and fibrocartilage, including chondrocytes, were present at the osseous insertion sites of the grafts. They showed remodeling and matrix synthesis postimplantation. Our tissue engineering approach may eventually provide a new solution to replace torn ACL in humans.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Collagen; Dermal fibroblasts; Implant; Ligament substitute; Tissue engineering

Document Type: Research Article

Affiliations: Laboratory of tissue engineering/LOEX, CHA, Hôpital de l’Enfant-Jésus, Quebec, QC, Canada

Publication date: 2011-04-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more