If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Open Access Locally Administered Adipose-Derived Stem Cells Accelerate Wound Healing Through Differentiation and Vasculogenesis

 Download
(HTML 64.7kb)
 
or
 Download
(PDF 1,772.4kb)
 
Download Article:

Abstract:

Despite advances in wound closure techniques and devices, there is still a critical need for new methods of enhancing the healing process to achieve optimal outcomes. Recently, stem cell therapy has emerged as a new approach to accelerate wound healing. Adipose-derived stem cells (ASCs) hold great promise for wound healing, because they are multipotential stem cells capable of differentiation into various cell lineages and secretion of angiogenic growth factors. The aim of this study was to evaluate the benefit of ASCs on wound healing and then investigate the probable mechanisms. ASCs characterized by flow cytometry were successfully isolated and cultured. An excisional wound healing model in rat was used to determine the effects of locally administered ASCs. The gross and histological results showed that ASCs significantly accelerated wound closure in normal and diabetic rat, including increased epithelialization and granulation tissue deposition. Furthermore, we applied GFP-labeled ASCs on wounds to determine whether ASCs could differentiate along multiple lineages of tissue regeneration in the specific microenvironment. Immunofluorescent analysis indicated that GFP-expressing ASCs were costained with pan-cytokeratin and CD31, respectively, indicating spontaneous site-specific differentiation into epithelial and endothelial lineages. These data suggest that ASCs not only contribute to cutaneous regeneration, but also participate in new vessels formation. Moreover, ASCs were found to secret angiogenic cytokines in vitro and in vivo, including VEGF, HGF, and FGF2, which increase neovascularization and enhance wound healing in injured tissues. In conclusion, our results demonstrate that ASC therapy could accelerate wound healing through differentiation and vasculogenesis and might represent a novel therapeutic approach in cutaneous wounds.

Keywords: Adipose-derived stem cells (ASCs); Differentiation; Secretion; Vascularization; Wound healing

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368910X520065

Publication date: February 1, 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more