Open Access Optimal Time Point for Neuronal Generation of Transplanted Neural Progenitor Cells in Injured Spinal Cord Following Root Avulsion

 Download
(HTML 60.6 kb)
 
or
 Download
(PDF 9,679.3 kb)
 
Download Article:

Abstract:

Root avulsion of the brachial plexus results in a progressive and pronounced loss of motoneurons. Cell replacement strategies have therapeutic potential in the treatment of motoneuron degenerative neurological disorders. Here, we transplanted spinal cord-derived neural progenitor cells (NPCs) into the cervical ventral horn of adult rats immediately, 2 weeks, or 6 weeks after root avulsion to determine an optimal time scale for the survival and differentiation of grafted cells. We showed that grafted NPCs survived robustly at all three time points and there was no statistical difference in survival rate. Interestingly, however, transplantation at 2 weeks postavulsion significantly increased the neuronal differentiation of transplanted NPCs compared to transplantation immediately or at 6 weeks postavulsion. Moreover, only NPCs transplanted at 2 weeks postavulsion were able to differentiate into choline acetyltransferase (ChAT)-positive neurons. Specific ELISAs and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) demonstrated that expression levels of BDNF and GDNF were significantly upregulated in the ventral cord at 2 weeks postavulsion compared to immediately or at 6 weeks postavulsion. Our study suggests that the cervical ventral horn at 2 weeks postavulsion both supports neuronal differentiation and induces region-specific neuronal generation possibly because of its higher expression of BDNF and GDNF.

Keywords: Motoneurons; Neural progenitor cells; Neuronal differentiation; Spinal root avulsion; Transplantation

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368910X522090

Publication date: February 1, 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more