Skip to main content

Open Access Prevention of Graft-Versus-Host Diseases by In Vivo supCD28mAb-Expanded Antigen-Specific nTreg Cells

Download Article:
(HTML 54.1015625 kb)
(PDF 315.59375 kb)
Naturally occurring CD4+CD25+ Treg cells (nTregs) can be exploited to establish an immunologic tolerance to non-self-antigens. The in vivo administration of a single superagonistic CD28-specific monoclonal antibody (supCD28mAb) to naive rat preferentially expanded the nTregs, which induced a potent inhibition of lethality of the graft-versus-host (GvH) diseases. The appearance of increased Foxp3 molecules was accompanied with a polarization towards a Th2 cytokine profile with a decreased production of IFN- and increased production of IL-4 and IL-10 in the serum of the antibody-treated rat. The peripheral Foxp3 nTregs are decreased in acute GvHD, while supCD28mAb administration showed that nTregs were preferentially proliferating in vivo, thus resulting in the significant prevention of the GvH disease. Furthermore, antigen-specific nTregs could suppress conventional T-cell proliferation stimulated with alloantigen in vitro. Taken together, our findings demonstrate that the potent regulatory functions of the Tregs for the treatment of GvHD are antigen specific. These data also provide evidence that GvHD is associated with decrease of Tregs in the periphery of the host. The determination of the Foxp3 Tregs can be a helpful tool to discriminate GvHD severity and lethality after allogeneic stem cell transplantation.

21 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: Antigen-specific nTregs; Graft-versus-host disease; nTregs

Document Type: Research Article

Affiliations: Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan

Publication date: 2010-06-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more