If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Open Access Human Cord Blood-Derived Endothelial Progenitor Cells and Their Conditioned Media Exhibit Therapeutic Equivalence for Diabetic Wound Healing

 Download
(HTML 55.9kb)
 
or
 Download
(PDF 926.1kb)
 
Download Article:

Abstract:

Transplantation of human cord blood-derived endothelial progenitor cells (EPCs) is reported to contribute to neovascularization in various ischemic diseases. However, the possible beneficial role and underlying mechanisms in diabetes-impaired wound healing have been less well characterized. In this study, EPC transplantation stimulated keratinocyte and fibroblast proliferation substantially as early as 3 days after injury, leading to significantly accelerated wound closure in streptozotocin-induced diabetic nude mice, compared to PBS control. RT-PCR analysis showed that EPCs secreted various wound healing-related growth factors. Among them, keratinocyte growth factor and platelet-derived growth factor were highly expressed in the EPCs and were present at substantial levels in the EPC-injected dermal tissue. Using EPC-conditioned medium (CM), we found that paracrine factors from EPCs directly exerted mitogenic and chemotactic effects on keratinocytes and fibroblasts. Moreover, injection of EPC-CM alone into the same diabetic wound mice promoted wound healing and increased neovascularization to a similar extent as achieved with EPC transplantation. These results indicate that the beneficial effect of EPC transplantation on diabetic wounds was mainly achieved by their direct paracrine action on keratinocytes, fibroblasts, and endothelial cells, rather than through their physical engraftment into host tissues (vasculogenesis). In addition, EPC-CM was shown to be therapeutically equivalent to EPCs, at least for the treatment of diabetic dermal wounds, suggesting that conditioned medium may serve as a novel therapeutic option that is free from allograft-associated immune rejection concern.

Keywords: Animal model; Diabetes mellitus; Endothelial progenitor cells (EPCs); Paracrine signaling; Wound healing

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368910X516637

Affiliations: Department of Biomedical Science, College of Life Science, CHA University, Gyeonggi-do, Korea

Publication date: December 1, 2010

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more