Skip to main content

Open Access Transplantation of Human Wharton's Jelly-Derived Stem Cells Alleviates Chemically Induced Liver Fibrosis in Rats

Download Article:
(HTML 61.5927734375 kb)
(PDF 2397.87890625 kb)
There is currently no effective treatment method available for liver fibrosis. We therefore evaluated the use of Wharton's jelly stem cells (WJSCs; the major umbilical cord stem cell population) to treat chemically induced liver fibrosis via intraperitoneal injection of thioacetamide. WJSCs were transplanted into liver-damaged rats via the portal vein and the treatment was evaluated by assessing serum biochemistry and histopathology. Transplanted WJSCs were distributed in the fibrotic area and around blood vessels, and hepatic recovery was accelerated. Serum prothrombin time significantly recovered, and serum albumin also improved at 21 days posttransplantation; collagen accumulation also decreased at 14 days. Thus, human WJSCs promoted recovery after chronic liver damage. Using immunohistochemical analyses, we determined that transplanted WJSCs produce albumin, hepatocyte growth factor (HGF), and metalloproteinase (MMP) after transplantation to chemically injured liver, indicating that WJSC may help to decrease liver collagen and thus may be useful for treating liver fibrosis.

35 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: Liver fibrosis; Metalloproteinase; Stem cells; Thioacetamide; Wharton's jelly

Document Type: Research Article

Affiliations: Center for Neuropsychiatry, China Medical University and Hospital and Beigang Hospital, Taichung and Yun-Lin, Taiwan, ROC

Publication date: 2010-11-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more