Skip to main content

Open Access Human Bone Marrow-Derived CD133+ Cells Delivered to a Collagen Patch on Cryoinjured Rat Heart Promote Angiogenesis and Arteriogenesis

Download Article:
(HTML 74.7744140625 kb)
(PDF 1839.970703125 kb)
Transplanting hematopoietic and peripheral blood-derived stem/progenitor cells can have beneficial effects in slowing the effects of heart failure. We investigated whether human bone marrow CD133+-derived cells (BM-CD133+ cells) might be used for cell therapy of heart injury in combination with tissue engineering. We examined these cells for: 1) their in vitro capacity to be converted into cardiomyocytes (CMs), and 2) their potential for in vivo differentiation when delivered to a tissue-engineered type I collagen patch placed on injured hearts (group II). To ensure a microvascular network ready for use by the transplanted cells, cardiac injury and patching were scheduled 2 weeks before cell injection. The cardiovascular potential of the BM-CD133+ cells was compared with that of a direct injection (group I) of the same cells in heart tissue damaged according to the same schedule as for group II. While a small fraction (2 ± 0.5%) of BM-CD133+cells cocultured with rat CMs switched in vitro to a CM-like cell phenotype, in vivo—and in both groups of nude rats transplanted with BM-CD133+—there was no evidence of any CM differentiation (as detected by cardiac troponin I expression), but there were signs instead of new capillaries and small arterioles. While capillaries prevailed over arterioles in group II, the opposite occurred in group I. The transplanted cells further contributed to the formation of new microvessels induced by the patch (group II) but the number of vessels did not appear superior to the one developed after directly injecting the BM-CD133+cells into the injured heart. Although chimeric human‐rat microvessels were consistently found in the hearts of both groups I and II, they represented a minority (1.5‐2.3%) compared with those of rat origin. Smooth muscle myosin isoform expression suggested that the arterioles achieved complete differentiation irrespective of the presence or absence of the collagen patch. These findings suggest that: 1) BM-CD133+ cells display a limited propensity for in vitro conversion to CMs; 2) the preliminarily vascularized bioscaffold did not confer a selective homing and differentiation advantage for the phenotypic conversion of BM-CD133+ cells into CMs; and 3) combined patching and cell transplantation is suitable for angiogenesis and arteriogenesis, but it does not produce better results, in terms of endothelial and smooth muscle cell differentiation, than the “traditional” method of cell injection into the myocardium.

39 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: Cardiac tissue engineering; Collagen; Stem cells; Xenotransplantation

Document Type: Research Article

Affiliations: Stem Cell Processing Laboratory, Cord Blood Bank, Department of Pediatric Oncohematology and Stem Cell Unit, University of Padua, Padua, Italy

Publication date: 2010-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more