Skip to main content

Open Access Efficient Genetic Modification of Cynomolgus Monkey Embryonic Stem Cells With Lentiviral Vectors

Download Article:
(HTML 66.6376953125 kb)
(PDF 15348.5634765625 kb)
Embryonic stem (ES) cells have the ability to undergo indefinite self-renewal in vitro and give rise during development to derivatives of all three primary germ layers (ectoderm, endoderm, and mesoderm), which make them a highly prized reagent in cell and gene therapy. Efficient introduction of various genes of interest into primate ES cells has proven to be difficult. Here, we demonstrated that the self-inactivating HIV-1-based lentiviral vectors constructed by MultiSite gateway technology are efficient tools for the transduction of cynomolgus monkey (Macaca fasicularis) ES (cmES) cells. After antibiotic selection, all of the transduced cells can stably express the reporter gene (humanized Renilla GFP or dTomato) while maintaining their stem cell properties, including continuous expression of stem cell markers, alkaline phosphatase (AKP), OCT-4, SSEA-4, and TRA-1-60, formation of embryoid bodies in vitro and teratomas in vivo containing derivatives of three embryonic germ layers. This approach will provide a useful tool for both gene function studies and in vivo cell tracking of stem cells.

51 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Green fluorescent protein; Lentivirus; Primate embryonic stem cells; Transduction

Document Type: Research Article

Publication date: 2010-09-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more