Open Access Ectopic Dopaminergic Progenitor Cells From En1+/Otx2lacZ Transgenic Mice Survive and Functionally Reinnervate the Striatum Following Transplantation in a Rat Model of Parkinson's Disease

 Download
(HTML 82.4kb)
 
or
 Download
(PDF 14,409.6kb)
 
Download Article:

Abstract:

Cell-based therapies for Parkinson's disease (PD) using neural stem cells to replace the lost dopamine neurons is currently an intense area of research. In this study we have evaluated the restorative potential of ectopic dopaminergic (DA) neurons derived from the rostral hindbrain (RH) of En1+/Otx2lacZ transgenic mice. The genetic modification of the DA progenitor domain in the En1+/Otx2lacZ mice is a gain of function, resulting in the enlargement of the area containing DA neurons, as well as an increase in their absolute number in the midbrain/hindbrain region. Amphetamine-induced rotation performed after cell transplantation into the unilaterally 6-hydroxydopamine-lesioned rat striatum revealed that animals with transgenic RH-derived DA grafts exhibited functional recovery similar to transgenic and wild-type ventral mesencephalon (VM)-derived DA grafts. Morphological analyses revealed equivalent numbers of surviving DA neurons from both homotopic VM- and ectopic RH-derived grafts from transgenic donors with low numbers of surviving serotonergic (5-HT) neurons. Conversely, grafts derived from wild-type donors contained predominantly surviving DA neurons or 5-HT neurons when they were prepared from the VM or RH, respectively. The study demonstrates the pattern of survival and functional potential of ectopic DA neurons derived from the RH of En1+/Otx2lacZ transgenic mice and that cell transplantation is an important neurobiological tool to characterize newly generated DA neural stem cells in vivo.
More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more