Skip to main content

Open Access Comparison of Transplant Efficiency Between Spontaneously Derived and Noggin-Primed Human Embryonic Stem Cell Neural Precursors in the Quinolinic Acid Rat Model of Huntington's Disease

Download Article:
(HTML 52.2 kb)
(PDF 7,272.4 kb)
Human neural precursors (hNP) derived from embryonic stem cells (hESC) may provide a viable cellular source for transplantation therapy for Huntington's disease (HD). However, developing effective transplantation therapy for the central nervous system (CNS) using hESC relies on optimizing the in vitro production of hNP to control appropriate in vivo posttransplantation neuronal differentiation. The current study provides the first direct in vivo comparison of the transplant efficiency and posttransplantation characteristics of spontaneously derived and noggin-primed hNP following transplantation into the quinolinic acid (QA) rat model of HD. We show that spontaneously derived and noggin-primed hNP both survived robustly up to 8 weeks after transplantation into the QA-lesioned striatum of the adult rat. Transplanted hNP underwent extensive migration and large-scale differentiation towards a predominantly neuronal fate by 8 weeks posttransplantation. Furthermore, in vitro noggin priming of hNP specifically increased the extent of neuronal differentiation at both 4 and 8 weeks posttransplantation when compared to spontaneously derived hNP grafts. The results of this study suggest that in vitro noggin priming provides an effective mechanism by which to enhance hNP transplant efficiency for the treatment of HD.

38 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Huntington's disease; Neural progenitors; Noggin; Stem cell transplantation

Document Type: Research Article

Publication date: 01 August 2010

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more