Open Access Optimizing Orthotopic Cell Transplantation in the Mouse Adrenal Gland

 Download
(HTML 46.6kb)
 
or
 Download
(PDF 1,514.6kb)
 
Download Article:

Abstract:

Orthotopic cell transplantation models are important for a complete understanding of cell‐cell interactions as well as tumor biology. In published studies of orthotopic transplantation in the mouse adrenal gland, human neuroblastoma cells have been shown to invade and occupy the adrenal, but in these investigations a true orthotopic model was not established. Here we show an orthotopic model in which transplanted cells are retained within the adrenal gland by formation of a fibrin clot. To establish an appropriate technique, we used brightly fluorescent 10 m polystyrene microspheres injected into the mouse adrenal gland. In the absence of fibrinogen/thrombin for clot formation, much of the injected material was extruded to the outside of the gland. When the microspheres were injected in a fibrinogen/thrombin mixture, fluorescence was confined to the adrenal gland. As a model neoplastic cell originating from the cortex of the gland, we used a tumorigenic bovine adrenocortical cell line. When 3 × 105 cells were implanted orthotopically, by 16 days the cell mass had expanded and had invaded the cortex, whereas when 1 × 105 cells were used, tumor masses were much smaller. We therefore subsequently used 3 × 105 cells. When mice were sacrificed at different time points, we found that tumor growth resulting was progressive and that by 26 days cells there was extensive invasion into the cortex or almost complete replacement of the cortex with tumor cells. As a model neoplastic cell of neural crest origin, we used SK-N-AS human neuroblastoma cells. Orthotopic transplantation of 3 × 105 cells resulted in extensive invasion and destruction of the gland by 26 days. In summary, the present orthotopic model for intra-adrenal cell transplantation is valuable for investigation of growth of neoplastic cells of both cortical and medullary origin and should be useful for future studies of cortex‐medulla interactions.

Keywords: Adrenal gland; Cortex; Medulla; Neuroblastoma; Orthotopic; Tumor

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368910X509077

Affiliations: Department of Internal Medicine III, University Medical Center, University of Dresden, Dresden, Germany; Department of Physiology, and Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

Publication date: May 1, 2010

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more