Skip to main content

Open Access The Efficient Generation of Induced Pluripotent Stem (iPS) Cells From Adult Mouse Adipose Tissue-Derived and Neural Stem Cells

Download Article:
(HTML 67.1201171875 kb)
(PDF 2710.216796875 kb)
Ectopic expression of key reprogramming transgenes in somatic cells enables them to adopt the characteristics of pluripotency. Such cells have been termed induced pluripotent stem (iPS) cells and have revolutionized the field of somatic cell reprogramming, as the need for embryonic material is obviated. One of the issues facing both the clinical translation of iPS cell technology and the efficient derivation of iPS cell lines in the research laboratory is choosing the most appropriate somatic cell type for induction. In this study, we demonstrate the direct reprogramming of a defined population of neural stem cells (NSCs) derived from the subventricular zone (SVZ) and adipose tissue-derived cells (ADCs) from adult mice using retroviral transduction of the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc, and compared the results obtained with a mouse embryonic fibroblast (mEF) control. We isolated mEFs, NSCs, and ADCs from transgenic mice, which possess a GFP transgene under control of the Oct4 promoter, and validated GFP expression as an indicator of reprogramming. While transduction efficiencies were not significantly different among the different cell types (mEFs 68.70 ± 2.62%, ADCs 70.61 ± 15.4%, NSCs, 68.72 ± 3%, p = 0.97), the number of GFP-positive colonies and hence the number of reprogramming events was significantly higher for both NSCs (13.50 ± 4.10 colonies, 0.13 ± 0.06%) and ADCs (118.20 ± 38.28 colonies, 1.14 ± 0.77%) when compared with the mEF control (3.17 ± 0.29 colonies, 0.03 ± 0.005%). ADCs were most amenable to reprogramming with an 8- and 38-fold greater reprogramming efficiency than NSCs and mEFs, respectively. Both NSC iPS and ADC iPS cells were demonstrated to express markers of pluripotency and could differentiate to the three germ layers, both in vitro and in vivo, to cells representative of the three germ lineages. Our findings confirm that ADCs are an ideal candidate as a readily accessible somatic cell type for high efficiency establishment of iPS cell lines.

38 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Adipose-derived cells; Induced pluripotent stem (iPS) cells; Neural stem cells; Reprogramming

Document Type: Research Article

Affiliations: Centre for Reproduction and Development, Monash Institute of Medical Research, Melbourne, Victoria, Australia

Publication date: 2010-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more