Skip to main content

Open Access Humanized Culture Medium for Clinical Expansion of Human Erythroblasts

Download Article:
 Download
(HTML 85.9306640625 kb)
 
or
 Download
(PDF 20653.0009765625 kb)
 

Abstract:

Ex vivo-generated erythroblasts represent alternative transfusion products. However, inclusion of bovine components in media used for their growth precludes clinical use, highlighting the importance of developing culture media based on pharmaceutical grade reagents. In addition, because adult blood generates ex vivo lower numbers of erythroblasts than cord blood, cord blood has been proposed as the source of choice for ex vivo erythroblast production. To clarify the potential of adult blood to generate erythroblasts ex vivo, experiments were designed to identify growth factors [stem cell factor (SCF), interleukin-3 (IL-3), erythropoietin (EPO), and/or thrombopoietin (TPO)] and the optimal concentration and addition schedule of hormones (dexamethasone and estradiol) sustaining maximal erythroid amplification from adult blood mononuclear cells (MNC) using media with serum previously defined as human erythroid massive amplification culture (HEMAser). Adult MNC stimulated with SCF and IL-3 in combination with EPO generated a 6‐12-fold increase in erythroid cells while TPO was ineffective. Dexamethasone and estradiol (both at 10−6 M) exerted partially overlapping but nonredundant functions. Dexamethasone was indispensable in the first 10 days of culture while estradiol was required from day 10 on. The growth factor and hormone combinations identified in HEMAser were then used to formulate a media composed of dialyzed pharmaceutical grade human albumin, human albumin-lipid liposomes, and iron-saturated recombinant human tranferrin (HEMAdef). HEMAdef sustained erythroid amplification as efficiently as HEMAser for cord blood MNC and 10-fold higher than HEMAser for adult blood MNC. In fact, the numbers of erythroblasts generated in HEMAdef by adult MNC were similar to those generated by cord blood MNC. In conclusion, this study identifies growth factors, hormone combinations, and human protein-based media that allow similar levels of ex vivo erythroid expansion from adult and cord blood MNC, paving the way to evaluate adult blood as a source of ex vivo-expanded erythroblasts for transfusion.

Keywords: Erythroblasts; Growth factors; Human albumin; Human erythroid massive amplification (HEMA) culture; Transfusion

Document Type: Research Article

DOI: https://doi.org/10.3727/096368909X485049

Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, New York, NY, USA; Cell Biology and Neuroscience, Istituto Superiore Sanità, Rome, Italy

Publication date: 2010-04-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more