Skip to main content

Open Access Bilirubin Promotes De Novo Generation of T Regulatory Cells

Download Article:
(HTML 62.4443359375 kb)
(PDF 3442.67578125 kb)
We have previously demonstrated that bilirubin administration to the recipient induces tolerance towards islet cell transplants across a complete MHC mismatch in a mouse model. Here we assess the mechanisms of such protection. Bilirubin treatment of recipients improved function of islet allografts by suppressing expressions of proinflammatory and proapoptotic genes in those islets and by increasing Foxp3+ T regulatory (Treg) cells at the site of transplanted islets at various days after transplantation. No prolongation of graft survival was observed in recipients treated with bilirubin when CD4+CD25+ T cells were predepleted from those recipients, indicating that Treg cells are necessary for the protective effect of bilirubin. Adoptive transfer of Treg cells from tolerant mice into Rag1−/− recipients resulted in long-term acceptance of skin allografts in an alloantigen-specific manner, suggesting that Treg cells are sufficient to induce tolerance. In addition, bilirubin treatment promoted de novo generation of Treg cells in Rag1−/− recipients. Thus, bilirubin treatment to the recipients prolongs islet allograft survival via a Treg-dependent manner in which CD4+CD25+ Treg cells are both necessary and sufficient for tolerance induction and graft acceptance. Bilirubin treatment promotes de novo generation of Treg cells that might account for the protective effects of bilirubin given to recipients.

42 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: Allograft survival; Bilirubin; Islet transplantation; T regulatory cells (Tregs)

Document Type: Research Article

Affiliations: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Publication date: 2010-04-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more