Skip to main content

Open Access Large-Scale Comparison of Liberase HI and Collagenase NB1 Utilized for Human Islet Isolation

Download Article:
(HTML 45.9912109375 kb)
(PDF 58.5751953125 kb)
For more than a decade Liberase HI was commonly used as the standard enzyme blend for clinical human islet isolation until enforced replacement by collagenase NB1 (NB1). This change resulted initially in a reduction in islet isolation outcome and transplant activities worldwide. This retrospective study was initiated to compare the efficiency of NB1 premium grade with Liberase in 197 human islet isolations. All pancreata were processed between January 2006 and June 2008 utilizing the same procedures for isolation and quality assessment except the administration of preselected lots of either Liberase (n = 101) or NB1 (n = 96). Utilizing Liberase, significantly more digested tissue and purified islet yield was produced compared to NB1. In contrast, the use of NB1 was associated with significantly higher purity and glucose stimulation index during dynamic perifusion. The expression of proinflammatory markers was almost identical except tissue factor expression, which was higher after utilization of Liberase. No difference was found in the percentage of pancreata fulfilling the criteria for clinical islet transplantation. The results suggest that Liberase is more efficient for pancreas dissociation than collagenase NB1 but seems to be more harmful to exocrine cells and islet tissue.

30 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Collagenase; Enzymes; Human pancreas; Islet isolation

Document Type: Research Article

Publication date: 2010-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more