Skip to main content

Open Access Long-Term Metabolic and Hormonal Effects of Exenatide on Islet Transplant Recipients With Allograft Dysfunction

Download Article:
 Download
(HTML 66.1689453125 kb)
 
or
 Download
(PDF 138.4775390625 kb)
 

Abstract:

The initial success of islet transplantation (ITx) is followed by graft dysfunction (GDF) and insulin reintroduction. Exenatide, a GLP-1 agonist, increases insulin and decreases glucagon secretion and has potential for -cell regeneration. To improve functional islet mass, exenatide treatment was given to ITx recipients with GDF. The objective of this study was to assess metabolic and hormonal effects of exenatide in GDF. In this prospective, single-arm, nonrandomized study, 11 type 1 diabetes recipients of ITx with GDF had HbA1c, weight, insulin requirements, and 5-h mixed meal tolerance test (MMTT; with/without exenatide given before test) at baseline, 3, 6, and 12 months after initiating exenatide treatment. Baseline MMTT showed postprandial hyperglycemia and hyperglucagonemia. Daily exenatide treatment resulted in improved glucose, increased amylin/insulin ratio, and decreased proinsulin/insulin ratio as assessed by MMTT. Glucagon responses remained unchanged. Exenatide administration 1 h before MMTT showed decreased glucagon and glucose at 0 min and attenuation in their postprandial rise. Time-to-peak glucose was delayed, followed by insulin, proinsulin, amylin, and C-peptide, indicating glucose-driven insulin secretion. Five subjects completed 12-month follow-up. Glucose and glucagon suppression responses after MMTT with exenatide were no longer observed. Retrospective 3-month analysis of these subjects revealed higher and sustained glucagon levels that did not suppress as profoundly with exenatide administration, associated with higher glucose levels and increased C-peptide responses. In conclusion, Exenatide suppresses the abnormal postprandial hyperglucagonemia and hyperglycemia observed in GDF. Changes in amylin and proinsulin secretion may reflect more efficient insulin processing. Different degrees of responsiveness to exenatide were identified. These may help guide the clinical management of ITx recipients.

Keywords: Diabetes; Exenatide; Glucagon; Graft dysfunction; Insulin; Insulin independence; Islet; Islet transplantation; Metabolism

Document Type: Research Article

DOI: https://doi.org/10.3727/096368909X474456

Affiliations: Clinical Islet Transplant Program, Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA

Publication date: 2009-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more