Skip to main content

Open Access Oscillating Pressure Treatment Upregulates Connexin43 Expression in Skeletal Myoblasts and Enhances Therapeutic Efficacy for Myocardial Infarction

Download Article:
(HTML 64.0009765625 kb)
(PDF 1117.0830078125 kb)


Transplantation of autologous skeletal myoblasts (SMBs) is a potential therapeutic approach for myocardial infarction. However, their clinical efficacy and safety is still controversial. Electrical coupling through gap junction between SMBs and host myocardium is essential for synchronized contraction and electrical stability. Here, we investigated the effect of heart beat-simulating environment, oscillating pressure, on the expression of connexin43 in two types of SMBs from rat and mouse. We found that connexin43 is markedly decreased under ischemia-mimicking conditions such as serum starvation and hypoxia (1% O2) in rat primary cultured SMBs and mouse C2C12 SMB cell line. Interestingly, the decrease of connexin43 expression under serum starvation was attenuated by oscillating pressure. Oscillating pressure treatment increased the expression of connexin43 twofold through AP-1 stimulation, which was blocked by PD98059, ERK inhibitor. In coculture of cardiomyocytes and C2C12, pressure-treated C2C12 and cardiomyocytes were able to form functional gap junction, which was demonstrated by both calcein-AM dye transfer assay and measurement of simultaneous contraction. In rat myocardial infarction model, transplantation of SMBs pretreated with oscillating pressure resulted in lesser ventricular dilatation and better systolic function than transplantation of untreated SMBs and control group. These results suggested that application of oscillating pressure on SMBs before transplantation may be useful to promote therapeutic efficacy for myocardial infarction by enhancing gap junction formation between transplanted and host cells.

Keywords: Cardiomyocytes; Gap junction; Ischemic heart; Serum starvation; Skeletal myoblast

Document Type: Research Article


Affiliations: National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea

Publication date: 2009-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more