Skip to main content

Open Access Neovascularization Induced Around an Artificial Device Implanted in the Abdomen by the Use of Gelatinized Fibroblast Growth Factor 2

Download Article:
(HTML 36.814453125 kb)
(PDF 897.6025390625 kb)
The development of a bioartificial pancreas (BAP) with immunoisolating fashion has been gaining attention as a new method for treating diabetes. We have been proceeding with the development of a bag-type BAP that can be easily implanted and that allows for the optional injection or rejection of cells at any time. If fibrosis develops around a BAP device, then the permeability of substances transmitted through a semipermeable membrane will decrease, thereby reducing the reactivity with glucose, so it is necessary for the material of the device to have an excellent histocompatibility. Furthermore, in order to improve the efficacy of BAP treatment, it is important to maintain an environment of ample blood flow around the device. We have created a bag-type device for BAP that is 20 × 20 mm in size and comprises two layers of membranes. We have used an EVAL membrane for the outer membrane of the two layers. The EVAL membrane is a semipermeable membrane with good insulin permeability, which functions as an immunoisolation membrane. The inner membrane consists of PAU-coated HD-PE (nonwoven material processed with polyaminourethan) and it is designed to function as a scaffold for cells. We used Lewis rats to determine whether the effectiveness of fibroblast growth factor 2 (bFGF) can be improved by concomitantly using bFGF with a capacity for blood vessel regeneration as well as bFGF immersed in a sheet of gelatin. We placed the BAP in the abdominal cavity and covered it with the greater omentum. We were able to significantly increase the blood flow and the number of new blood vessels in the tissue surrounding the BAP device by using gelatinized bFGF. There were only a few instances of fibrosis as a biological reaction to the EVAL membrane, and the infiltration of inflammatory cells was mild. There were no adverse effects related to implantation of the device. We confirmed in this study that the use of an implantable BAP device and bFGF allowed for a better blood flow around the BAP device. There were only minor instances of fibrosis and inflammation reaction around the BAP, thus indicating the BAP that we are currently developing to have an excellent histocompatibility.

23 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Bioartificial pancreas; Fibroblast growth factor 2; Neovascularization

Document Type: Research Article

Affiliations: Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan

Publication date: 2009-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more