Open Access Cell-Based Therapy for Heart Failure: Skeletal Myoblasts

(HTML 88.9 kb)
(PDF 91.8 kb)
Download Article:


Satellite cells are committed precursor cells residing in the skeletal muscle. These cells provide an almost unlimited regeneration potential to the muscle, contrary to the heart, which, although proved to contain cardiac stem cells, possesses a very limited ability for self-renewal. The idea that myoblasts (satellite cell progenies) may repopulate postinfarction scar occurred around the mid-1990s. Encouraging results of preclinical studies triggered extensive research, which led to the onset of clinical trials. These trials have shown that autologous skeletal myoblast transplantation to cure heart failure is feasible and relatively safe (observed incidences of arrhythmia). Because most of the initial studies on myoblast application into postischemic heart have been carried out as an adjunct to routine surgical procedures, the true clinical outcome of such therapy in regard to cell implantation is blurred and requires to be elucidated. The mechanism by which implantation of skeletal myoblast may improve heart function is not clear, especially in the light of inability of these cells to couple electromechanically with a host myocardium. Successful myoblast therapy depends on a number of factors, including: delivery to the target tissue, long-term survival, efficacious engraftment, differentiation into cardiomyocytes, and integration into the new, unique microenvironment. All these steps constitute a potential goal for cell manipulation aiming to improve the overall outcome of such therapy. Precise understanding of the mechanism by which cells improve cardiac function is essential in giving the sensible direction of further research.

Keywords: Myoblast therapy; Myocardium regeneration; Stem cells

Document Type: Research Article


Publication date: July 1, 2009

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more