Skip to main content

Open Access Delivery of Adipose-Derived Precursor Cells for Peripheral Nerve Repair

Download Article:
(HTML 55.451171875 kb)
(PDF 12537.5361328125 kb)


To test the hypothesis that the transplantation of adipose precursor cells (APCs) improves nerve regeneration and functional recovery, human APCs were transplanted into the lumen of a nerve guide in a 6-mm unilateral sciatic nerve defect in athymic rats. The three control groups for the study were biodegradable, polycaprolactone-based nerve conduit without APCs, autograft, and empty defect. Behavioral tests were performed every 3 weeks, and the sciatic functional index (SFI) was calculated based on measurements from the hindlimb prints. After 12 weeks, the nerve as well as right and left gastrocnemius muscles were removed and preserved for histological evaluation. Full regeneration of the sciatic nerve occurred on the rats that received the autograft, the guide, and the guide with APCs; no regeneration was observed on any of the rats in which the defect was left untreated (empty defect). APCs survived transplantation for up to 12 weeks in the injured peripheral nerve. No significant colocalization was observed between the immunostaining for glial fibrillary protein and anti-human lamin A/C, implying that the APCs did not differentiate into Schwann cells at the site of injury. In comparison with the rats with untreated defects, a decrease in muscle atrophy was observed on those rats that received the autograft and the guide with cells as indicated by the gastrocnemius muscle weight ratio and the muscle fiber ratio. Significant differences in SFI were observed 3 weeks postinjury between the rats in which the guide was left empty and those that received the guide with APCs; however, these differences were not observed at 12 weeks. The transplantation of APCs promoted the formation of a more robust nerve as evidenced by the results from the cross-sectional area of regenerated nerve, and the transplantation of APCs produced a decrease in muscle atrophy.

Keywords: Adipose; Nerve guide; Peripheral nerve repair; Polycaprolactone; Progenitor cells

Document Type: Research Article


Publication date: 2009-02-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more