Skip to main content

Open Access Suppression of Carbon Tetrachloride-Induced Liver Fibrosis by Transplantation of a Clonal Mesenchymal Stem Cell Line Derived From Rat Bone Marrow

Download Article:
(HTML 45.728515625 kb)
(PDF 14161.400390625 kb)


Transplantation of hepatocytes or bone marrow-derived cells has been shown to ameliorate liver fibrosis in animal models, but no direct comparison of relative efficiency has been made. The aim of this study was to compare the efficiency of a bone marrow-derived clonal mesenchymal stem cell line established by us (rBM25/S3) with that of its adipogenic or hepatogenic differentiation derivative for suppression of rat liver fibrosis. After induction of differentiation of rBM25/S3 cells into adipogenic or hepatogenic cells in culture, we intrasplenically transplanted the three types of cells into rats (3 × 107 cells/rat) before and 4 weeks after initiation of carbon tetrachloride treatment (1 ml/kg body weight twice a week for 8 weeks) to induce liver fibrosis. Undifferentiated rBM25/S3 cells were the most effective for suppression of liver fibrosis, followed by the adipogenic cells and hepatogenic cells. Expression levels of MMP-2 and MMP-9 were also highest in undifferentiated rBM25/S3 cells. These results indicate that bone marrow-derived clonal mesenchymal stem cell lines are useful for further mechanistic studies on cell-mediated suppression of liver fibrosis and that such cell lines will provide information on an appropriate cell source for transplantation therapy for cirrhosis.

Keywords: Liver fibrosis; Mesenchymal stem cells

Document Type: Research Article


Publication date: 2009-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more