Skip to main content

Open Access Cotransplantation of Mouse Embryonic Stem Cells and Bone Marrow Stromal Cells Following Spinal Cord Injury Suppresses Tumor Development

Download Article:
 Download
(HTML 67.2 kb)
 
or
 Download
(PDF 12,236.9 kb)
 

Abstract:

Embryonic stem (ES) cells are a potential source for treatment of spinal cord injury (SCI). Although one of the main problems of ES cell-based cell therapy is tumor formation, there is no ideal method to suppress tumor development. In this study, we examined whether transplantation with bone marrow stromal cells (BMSCs) prevented tumor formation in SCI model mice that received ES cell-derived grafts containing both undifferentiated ES cells and neural stem cells. Embryoid bodies (EBs) formed in 4-day hanging drop cultures were treated with retinoic acid (RA) at a low concentration of 5 × 10−9 M for 4 days, in order to allow some of the ES cells to remain in an undifferentiated state. RA-treated EBs were enzymatically digested into single cells and used as ES cell-derived graft cells. Mice transplanted with ES cell-derived graft cells alone developed tumors at the grafted site and behavioral improvement ceased after day 21. In contrast, no tumor development was observed in mice cotransplanted with BMSCs, which also showed sustained behavioral improvement. In vitro results demonstrated the disappearance of SSEA-1 expression in cytochemical examinations, as well as attenuated mRNA expressions of the undifferentiated markers Oct3/4, Utf1, Nanog, Sox2, and ERas by RT-PCR in RA-treated EBs cocultured with BMSCs. In addition, MAP2-immunopositive cells appeared in the EBs cocultured with BMSCs. Furthermore, the synthesis of NGF, GDNF, and BDNF was confirmed in cultured BMSCs, while immunohistochemical examinations demonstrated the survival of BMSCs and their maintained ability of neurotrophic factor production at the grafted site for up to 5 weeks after transplantation. These results suggest that BMSCs induce undifferentiated ES cells to differentiate into a neuronal lineage by neurotrophic factor production, resulting in suppression of tumor formation. Cotransplantation of BMSCs with ES cell-derived graft cells may be useful for preventing the development of ES cell-derived tumors.

Keywords: Bone marrow stromal cells; Cotransplantation; Embryonic stem cells; Spinal cord injury; Tumor suppression

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368909788237122

Publication date: January 1, 2009

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more