Skip to main content

Clonal Analysis of Hematopoiesis-Supporting Activity of Human Mesenchymal Stem Cells in Association With Jagged1 Expression and Osteogenic Potential

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Human mesenchymal stem cells (hMSCs) are promising feeder cells for expanding hematopoietic stem cells (HSCs), but their potential is heterogeneous. We examined the hematopoiesis-supporting activity of hMSC at the clonal level in relation to the osteogenic potential and gene expression. Hematopoiesis-supporting activities of stably immortalized clonal hMSC lines were evaluated by the expansion of CD34+CD38 cells after 7-day coculture with human cord blood-derived CD34+ cells. Six of 16 clones expanded the numbers of CD34+CD38 cells >500-fold. These hematopoiesis-supportive clones also showed high gene expression of Jagged1, a Notch ligand, as well as high potential to deposit calcium after osteogenic induction. Thus, osteogenic hMSC clones may provide proper microenvironments for HSC expansion, ultimately conveying self-renewal signals to HSCs via the Notch pathway. However, they lost hematopoiesis-supporting activity after osteogenic differentiation. The hematopoiesis-supportive clones are potentially useful for hematopoietic microenvironment studies and as components of a coculture system for expansion of HSCs, free from contamination by xenogeneic pathogens.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cell transplantation; Expansion; Hematopoietic stem cell; Mesenchymal stem cell; Umbilical cord blood

Document Type: Research Article

Publication date: 2008-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more