Skip to main content

Environmental Housing and Duration of Exposure Affect Striatal Graft Morphology in a Rodent Model of Huntington's Disease

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Clinical trials of cell replacement therapy in Huntington's disease have shown its safety, feasibility, and potentially long-lasting effects. However, more needs to be known regarding the conditions that stimulate plasticity and compensation achieved by neural grafts to maximize posttransplantation recovery of such neurorehabilitative therapies. The effects of enriched environment (EE), behavioral experience, and transplantation can each separately influence neuronal plasticity and recovery of function after brain damage, and the mechanisms by which these factors interact to modify the survival, integration, or function of grafted tissues are at present unknown. To investigate the effects of variable housing conditions and duration on morphological and cellular changes within embryonic striatal transplants, rats received unilateral excitotoxic lesions of the striatum, followed by E15 whole-ganglionic eminence suspension grafts. The rats were divided into three groups according to housing: full-time EE, 1 h/day exposure to EE, or standard laboratory cages. The experimental design included “early” (7 weeks postgrafting) and “late” (13 weeks postgrafting) survival time points to explore the effects of exposure lengths to the three housing conditions. The morphological and cellular effects on the grafts were analyzed using immunohistochemistry, cell morphology, image analysis, and enzyme-linked immunoassay. Both the duration of the exposure and the housing conditions were seen to influence multiple parameters of grafted cell morphology. The factors acted either independently (e.g., on graft size), complementarily (e.g., on spine density), or had no distinctive effect (e.g., on lesion size) on graft development. Features of embryonic striatal grafts and their trophic milieu were influenced both by the complexity of the environmental conditions and by the length of exposure to them. The data suggest that neurorehabilitation should be a feature of clinical trials of cell transplantation in order to exploit the underlying mechanisms that promote anatomical integration of the grafted cells and maximize transplant-mediated functional recovery.

Keywords: Environmental enrichment; Huntington's disease; Rat; Striatal grafts

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368908787236558

Publication date: October 1, 2008

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more