Skip to main content

Immunological Tolerance-Related Genes in a Spontaneous Tolerant Model of Rat Liver Transplantation Explored by Suppression Subtractive Hybridization

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Natural immunological tolerance can be induced in certain types of allogeneic liver transplantation in rats. To screen for genes associated with the induction of tolerance, suppression subtractive hybridization was performed in the rat liver transplantation model between a DA donor and PVG recipient combination where spontaneous immunological tolerance is known to occur without any immunosuppressive treatment. As a result, 112 genes were cloned from a DA liver graft that survived for 20 days in the fully allogeneic PVG recipient. After confirmation of the expression intensity using an in-house manufactured DNA array with cDNAs from the DA graft, 36 genes were classified in the highly expressed group and 26 moderately expressed group. In the first group, there were 8 immunoglobulin-related genes and 6 MHC class II-related genes, suggesting the existence of an underlying rejection response. Among those genes, an antiapoptotic gene in the p38 MAP kinase pathway, heme oxygenase gene (HO-1), and a ras cascade gene, IQ motif containing GTPase activating protein 1 (Iqgap1), retained biological significance. The results suggested that the molecular response to a liver graft tends to be antiapoptotic and to terminate the rejection response. Unfortunately, there was no gene identified that qualified as a putative immunosuppressive protein, liver suppressor factor-1 (LSF-1). The panel of genes identified in the present work will be a useful panel of candidate genes to investigate the induction of spontaneous tolerance.

Keywords: Gene expression; Liver transplantation; Rat; Subtraction; Tolerance

Document Type: Research Article

DOI: https://doi.org/10.3727/000000008783906955

Affiliations: 1: *Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan 2: Department of Pathology, National Research Institute for Child Health and Development, Tokyo, Japan 3: Department of Molecular, Cell Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan 4: Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan

Publication date: 2008-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more