Skip to main content

Human Islet Separation Utilizing a Closed Automated Purification System

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

A central step within the human islet isolation process is the separation of islets from contaminating exocrine tissue utilizing linear, continuous density gradients manufactured by means of manually controlled standard gradient makers (SGM). The present study was performed to develop a closed, automated purification system (APS) that customizes density gradient profiles aiming to standardize and optimize human islet purification. Digested human pancreata were pooled, split evenly, and incubated in UW solution according to our standard protocol (n = 11). Continuous density gradient centrifugation was performed in parallel in two refrigerated COBE 2991 cell separators loaded with light (1.076 g/ml) and heavy (1.097 g/ml) Ficoll utilizing either an SGM or two computer-controlled pumps connected to Ficoll-containing bags. Quality control included islet equivalent (IE) yield, purity, in vitro function, and islet cytokine expression. Gradient profiles demonstrated that the APS readily customizes linear and nonlinear gradients. In comparison to the SGM, the APS recovered a higher percentage of the expected volume of continuous gradients (90.0 ± 1.1% vs. 98.2 ± 2.0%, p < 0.05). Islet yield (120,468 ± 15,970 vs. 114,570 ± 15,313 IE, NS) and purity (51.7 ± 4.8% vs. 54.4 ± 4.9%, NS) were nearly identical utilizing the SGM or APS. Decreased MCP-1, IL-6, and IL-8 expression indicated that APS-purified islets were possibly exposed to less proinflammatory stress. Compared to standard procedures, similar success and gentle continuous density gradient separation of human islets is feasible utilizing the APS. The APS facilitates the standardization of this complex procedure according to cGMP standards.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Closed system; Density gradient purification; Human islet isolation; Islet purification

Document Type: Research Article

Publication date: 2008-12-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more