Skip to main content

Establishment of Immortalized Human Hepatocytes by Introduction of HPV16 E6/E7 and hTERT as Cell Sources for Liver Cell-Based Therapy

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

For future cell-based therapies for liver diseases, the shortage of cell sources must be resolved. Immortalized human hepatocytes are expected to be among the new sources. In addition to telomerase activation by the introduction of human telomerase reverse transcriptase (hTERT), inactivation of the p16/RB pathway and/or p53 by E6/E7 of human papillomavirus type 16 (HPV16) has been shown to be useful for efficient immortalization of several human cell types. Here we report the immortalization of human hepatocytes by the introduction of HPV16 E6/E7 and hTERT. Human adult hepatocytes were lentivirally transduced with HPV16 E6/E7 and hTERT. Two human immortalized hepatocyte cell lines were established and were named HHE6E7T-1 and HHE6E7T-2. Those cells proliferated in culture beyond 200 population doublings (PDs). Albumin synthesis and expression of liver-enriched genes were confirmed, but gradually decreased as passages progressed. Karyotype analysis showed that HHE6E7T-1 cells remained near diploid but that HHE6E7T-2 cells showed severe aneuploidy at 150 PDs. Subcutaneous injection of these cells into severe combined immunodeficiency (SCID) mice did not induce tumor development. Intrasplenic transplantation of dedifferentiated HHE6E7T-1 cells over 200 PDs significantly improved the survival of acetaminophen-induced acute liver failure SCID mice. In conclusion, we successfully established immortalized human hepatocytes that retain the characteristics of differentiated hepatocytes. We also showed the reduction of hepatocyte-specific functions in long-term culture. However, the results of intrasplenic transplantation to SCID mice with acetaminophen-induced acute liver failure showed the possibility of HHE6E7T-1 serving as a cell source for hepatocyte transplantation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Acetaminophen-induced acute liver failure; Chromosomal instability; Dedifferentiation; Hepatocyte transplantation; Tumorigenicity

Document Type: Research Article

Publication date: 2008-09-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more