Skip to main content

Islet Graft Response to Transplantation Injury Includes Upregulation of Protective as Well as Apoptotic Genes

Buy Article:

$79.00 plus tax (Refund Policy)


Pancreatic islets are particularly vulnerable in the initial days after transplantation when multiple factors converge to damage the islet graft. The aim of this study was to investigate the expression profile of genes involved in damage and protection of -cells in the initial days after syngeneic islet transplantation. We studied the expression of a set of selected genes involved in apoptosis (Bcl2, BclxL, Bax, Bad, Bid, and CHOP), cytokine defense, (SOCS-1 and SOCS-3), or free radical protection (Hmox1, Cu/Zn-SOD, Mn-SOD, and Hsp70). Because hyperglycemia has deleterious effects on islet transplantation outcome, we studied its effect on the expression of these genes. Five hundred islets were syngeneically transplanted under the kidney capsule of normoglycemic or streptozotocin-induced diabetic Lewis rats. Gene expression was analyzed by quantitative real-time RT-PCR in grafts 1, 3, and 7 days after transplantation, and in freshly isolated islets. The expression of proapoptotic genes Bid and CHOP, as well as protective genes BclxL, Socs1, Socs3, Hmox1, and MnSod, was maximally increased 1 day after transplantation, and in most cases it remained increased 7 days later, indicating the presence of a protective response against cell damage. In contrast, the expression of Bcl2, Bax, Bad, Cu/ZnSod, and Hsp70 genes did not change. Hyperglycemia did not modify the expression of most studied genes. However, MnSod and Ins2 expression was increased and reduced, respectively, on day 7 after transplantation to diabetic recipients, suggesting that hyperglycemia increased oxidative stress and deteriorated -cell function in transplanted islets.

Keywords: Apoptosis; ER stress; Gene expression; Hyperglycemia; Islet transplantation; Oxidative stress

Document Type: Research Article


Publication date: September 1, 2008

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more