Skip to main content

The Use of Clinically Approved Small Particles of Iron Oxide (SPIO) for Labeling of Mesenchymal Stem Cells Aggravates Clinical Symptoms in Experimental Autoimmune Encephalomyelitis and Influences Their In Vivo Distribution

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Mesenchymal stem cells (MSC) have been shown to ameliorate symptoms in experimental autoimmune encephalomyelitis (EAE), a model of MS. Using cloned MSC labeled with clinically approved small particles of iron oxide (SPIO) for treatment of EAE we analyzed the tissue localization of transferred cells. Treatment with unlabeled MSC led to disease amelioration compared to controls. In contrast, treatment with SPIO-labeled MSC lead to increase in disease severity. Treatment with SPIO alone did not alter disease course. After transplantation labeled and nonlabeled MSC were detected in the CNS and the liver with significantly more SPIO-labeled cells present in the CNS. Iron deposition was present in the group treated with SPIO-labeled MSC, indicating that in vivo the initially cell surface-bound iron detached from the MSC. These results could be of great importance for imaging of patients in the clinical setting, indicating that in vivo application of SPIO-labeled MSC needs to be performed with caution because the cell-derived exposure of iron can lead to disease aggravation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Experimental autoimmune encephalomyelitis; Homing; Imaging; Mesenchymal stem cells; Multiple sclerosis; Small particles of iron oxide

Document Type: Research Article

Publication date: 2008-08-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more