Skip to main content

Effects of Direct Transplantation of Multipotent Mesenchymal Stromal/Stem Cells Into the Demyelinated Spinal Cord

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

The adult bone marrow contains a population of multipotent mesenchymal stromal cells (MSCs), defined by plastic adherence, expression of stromal cell surface markers, and differentiation into mesenchymal lineages. There has been much interest in the possible therapeutic use of MSCs in the treatment of demyelinating diseases of the central nervous system. One therapeutic possibility is that these cells may be able to remyelinate when directly injected into the demyelinated spinal cord. Here we examine the effects of direct transplantation of green fluorescent protein (GFP)-labeled MSCs into a model of focal spinal cord demyelination induced by ethidium bromide. We demonstrate that direct intralesional injection of undifferentiated MSCs does not lead to remyelination. Furthermore, we report that transplanted MSCs migrate into areas of normal tissue, deposit collagen, and are associated with axonal damage. These findings support the need for further experimental evaluation of the safety and efficacy of direct parenchymal injection of MSCs into demyelinated lesions and highlight an important issue regarding potential clinical consequences of culture heterogeneity of MSCs between centers.

Keywords: Bone marrow; Demyelination; Mesenchymal stromal cell; Multiple sclerosis; Remyelination

Document Type: Research Article

DOI: https://doi.org/10.3727/096368908786516738

Publication date: 2008-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more