Skip to main content

Adult Spinal Cord Stem/Progenitor Cells Transplanted as Neurospheres Preferentially Differentiate Into Oligodendrocytes in the Adult Rat Spinal Cord

Buy Article:

$79.00 plus tax (Refund Policy)


Neural stem/progenitor cells (NSPCs) capable of generating new neurons and glia reside in the adult mammalian spinal cord. Transplantation of NSPCs has therapeutic potential for spinal cord injury, although there is limited information on the ability of these cells to survive and differentiate in vivo. Neurospheres cultured from the periventricular region of the adult spinal cord contain NSPCs that are self-renewing and multipotent. We examined the survival, proliferation, migration, and differentiation of adult spinal cord NSPCs generated from green fluorescent protein (GFP) transgenic rats and transplanted into the intact spinal cord. The grafted GFP-expressing cells survived for at least 6 weeks in vivo and migrated from the injection site along the rostro-caudal axis of the spinal cord. Transplanted cells transiently proliferated following transplantation and approximately 17% of the GFP-positive cells were apoptotic at 1 day. Also, better survival was seen with NSPCs transplanted as neurospheres in comparison to NSPCs transplanted as dissociated cells. By 1 week posttransplantation, grafted cells primarily expressed an oligodendrocytic phenotype and only 2% differentiated into astrocytes. Approximately 75% versus 38% of the grafted cells differentiated into oligodendrocytes after transplantation into spinal white versus gray matter, respectively. This is the first report to examine the time course of cell survival, proliferation, apoptosis, and phenotypic differentiation of transplanted NSPSs in the spinal cord. This is also the first report to examine the differences between transplanted NSPCs grafted as neurospheres or dissociated cells, and to compare the differentiation potential after transplantation into spinal cord white versus gray matter.

Keywords: Adult neural stem/progenitor cells; Apoptosis; Differentiation; Neurospheres; Oligodendrocytes; Proliferation; Survival

Document Type: Research Article


Publication date: 2008-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more