Skip to main content

Antisense RNA Sequences Modulating the Ataxin-1 Message: Molecular Model of Gene Therapy for Spinocerebellar Ataxia Type 1, a Dominant-Acting Unstable Trinucleotide Repeat Disease

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Spinocerebellar ataxia type 1 (SCA1) is a dominant inherited disease caused by expanded trinucleotide repeats resulting in an increased polyglutamine tract in the gene product. As a potential therapeutic approach for SCA1, we tested antisense RNAs targeting two regions of the ataxin-1 message. Single-stranded regions around the translational initiation site and the intron 8 splice donor site of the ataxin-1 message were identified by computer-assisted RNA secondary structure prediction. Plasmids were generated to contain a 254-bp antisense sequence spanning the translation initiation site (pLasBDini) or a 317-bp sequence spanning the intron 8 splice donor site (pLasBDei) of the ataxin-1 message. These plasmids were transfected into Chinese hamster ovary cells engineered to express either expanded or unexpanded ataxin-1 message and protein. Reduced levels of mutant ataxin-1 message (82 CAG repeats), wild-type ataxin-1 message (30 CAG repeats), and ataxin-1 protein were observed by Northern and Western blot analyses in pLasBDini-transfected clones. pLasBDei-transfected 293 cells exhibited a shift in ataxin-1 message to a size several kilobases longer than that of the natural message. Reverse transcriptase/polymerase chain reaction assays demonstrated the retention of message spanning the intron 8 splice acceptor and the inability to amplify sequences between exons 8 and 9, implying that normal splicing of intron 8 had been interrupted. We conclude that antisense RNAs were effective in reducing or modifying ataxin-1 messages in transfected cells, and may be an effective genetic strategy for therapy of SCA1 and similar dominant-acting neurological disorders.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Ataxia; Cerebellum; Gene therapy; Spinocerebellar ataxia type 1

Document Type: Research Article

Publication date: 2008-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more