Skip to main content

A Novel Human Stem Cell Coculture System That Maintains the Survival and Function of Culture Islet-Like Cell Clusters

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Islet-like cell clusters (ICCs) have been suggested to be a source of insulin-producing tissue for xenotransplantation in type 1 diabetes. We designed an approach to maintain the cultured rat pancreatic ICC survival and function, when cocultured with human umbilical cord mesenchymal stem cells (HUMSCs). HUMSCs in coculture have the ability to maintain ICC survival and function, for which number and insulin secretion of ICCs are increasing and lasting for 3 months, while ICCs gradually crash, which results in cell death after a period of 12 days of culture without HUMSCs. Cytokine protein array showed it has more than a twofold increase in levels of several cytokines (interleukin-6, tissue inhibitor of metalloproteinases-1, tissue inhibitor of metalloproteinases-2, monocyte chemoattractant protein-1, growth related oncogene, hepatocyte growth factor, insulin-like growth factor binding proteins 4, and interleukin-8) on coculture medium, implying an important role of these cytokines in this coculture system. These findings suggest that coculture with HUMSCs may have a significant potential to protect ICCs from damage during culture, and may be employed in a novel culture approach to maintain islet cell survival and function before transplantation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Coculture; Cytokines; Human umbilical cord mesenchymal stem cells; Islet-like cell clusters

Document Type: Research Article

Publication date: 2008-06-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more