Skip to main content

Improved Glucose Regulation on a Low Carbohydrate Diet in Diabetic Rats Transplanted With Macroencapsulated Porcine Islets

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

Islet xenografts from porcine donors can reverse diabetes in experimental animal models and may be an alternative to human islet transplantation. We have recently reported the ability of porcine islets encapsulated in a double layer of hydrophilic agarose to maintain in vitro functional ability for >6 months. Although -cells are capable of adapting their secretory capacity in response to glucose levels, evidence has shown that prolonged hyperglycemia can compromise this ability. The aim of the present study was to determine the effects of diet manipulation on the long-term regulation of blood glucose levels, and the preservation of functional islet in the macrobeads. Twenty-one streptozotocin-induced diabetic Wistar-Furth male rats were randomly assigned to two diets containing 64% carbohydrate (CHO) or 20% CHO. Groups of five to six animals assigned to either diet were implanted with either empty (EM) or porcine islet-containing macrobeads (PIM) and followed for 333 days. Observations included general condition, body weight, blood glucose, and food and water intakes. Monthly blood samples were collected for insulin and C-peptide analysis. The 20% CHO diet significantly lowered blood glucose values when compared with those of the 64% CHO groups for both the empty (14.94 ± 0.41 vs. 16.26 ± 0.42 mmol/L, respectively, p < 0.001) and islet macrobead recipients (12.88 ± 0.39 vs. 15.57 ± 0.85 mmol/L, respectively, p < 0.001). The different diets, however, had no statistically significant effects on the preservation of islet mass in the macrobead. Serum porcine C-peptide was detected throughout the experiment in animals receiving porcine islet macrobeads, regardless of diet. Diabetic rats fed a low carbohydrate level diet and transplanted with porcine islet macrobeads had improved total tissue glucose disposal and improved clinical parameters associated with diabetes.

Keywords: Diet; Encapsulation; Porcine islets; Xenotransplantation

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368908785095962

Publication date: May 1, 2008

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2008/00000017/00000005/art00009
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more