Skip to main content

Biocompatibility of PEG-Based Hydrogels in Primate Brain

Buy Article:

$79.00 plus tax (Refund Policy)


Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.

Keywords: Biocompatibility; Hydrogel; Polyethylene glycol; Primate

Document Type: Research Article


Affiliations: 1: Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA 2: Departments Psychiatry and Neurosurgery, Yale University, New Haven, CT, USA 3: Department Chemical and Biological Engineering, University Colorado, Boulder, CO, USA

Publication date: 2008-04-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more