Skip to main content

Bioengineering Neural Stem/Progenitor Cell-Coated Tubes for Spinal Cord Injury Repair

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The aim of this study was to understand the survival and differentiation of neural stem/progenitor cells (NSPCs) cultured on chitosan matrices in vivo in a complete transection model of spinal cord injury. NSPCs were isolated from the subependyma of lateral ventricles of adult GFP transgenic rat forebrains. The GFP-positive neurospheres were seeded onto the inner lumen of chitosan tubes to generate multicellular sheets ex vivo. These bioengineered neurosphere tubes were implanted into a completely transected spinal cord and assessed after 5 weeks for survival and differentiation. The in vivo study showed excellent survival of NSPCs, as well as differentiation into astrocytes and oligodendrocytes. Importantly, host neurons were identified in the tissue bridge that formed within the chitosan tubes and bridged the transected cord stumps. The excellent in vivo survival of the NSPCs coupled with their differentiation and maintenance of host neurons in the regenerated tissue bridge demonstrates the promise of the chitosan tubes for stem cell delivery and tissue regeneration.

Keywords: Chitosan; Differentiation; Neural stem/progenitor cells; Spinal cord injury; Tissue regeneration

Document Type: Research Article

DOI: https://doi.org/10.3727/096368908784153887

Publication date: 2008-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more