Skip to main content

Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity

Buy Article:

$79.00 plus tax (Refund Policy)


Stem and progenitor cell therapy is a novel strategy to enhance cardiovascular regeneration. Cell isolation procedures are crucial for the functional activity of the administered cellular product. Therefore, new isolation techniques have to be evaluated in comparison to the Ficoll isolation procedure as the current gold standard. Here we prospectively evaluated a novel point-of-care device (Harvest BMAC System) for the concentration of bone marrow total nucleated cells (TNC) in comparison to the Ficoll isolation procedure for bone marrow mononucleated cells (MNC). The yield in total numbers of TNC was 2.4-fold higher for Harvest compared to Ficoll. Despite significant differences in their cellular compositions, the colony-forming capacity was similar for both products. Intriguingly, the migratory capacity was significantly higher for the Harvest TNC (164 ± 66%; p = 0.007). In a mouse model of hind limb ischemia, the increase in blood flow recovery was similar between Harvest BM-TNC and Ficoll BM-MNC (0.53 ± 0.20 vs. 0.46 ± 0.15; p = 0.88). However, adjustment of the injected cell number based on the higher yield of Harvest TNC resulted in a significant better recovery (0.64 ± 0.16 vs. 0.46 ± 0.15; p = 0.003). Cells concentrated by the Harvest point-of-care device show similar or greater functional activity compared to Ficoll isolation. However, the greater yield of cells and the wider range of cell types for the Harvest device may translate into an even greater therapeutic effect.

Keywords: Bone marrow; Cell therapy; Ischemia; Point of care; Vasculogenesis

Document Type: Research Article


Affiliations: 1: Department of Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany 2: CBR Institute for Biomedical Research, Boston, MA 02115, USA

Publication date: 2007-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more