Skip to main content

Novel Cell Seeding System Into a Porous Scaffold Using a Modified Low-Pressure Method to Enhance Cell Seeding Efficiency and Bone Formation

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The efficient seeding of cells into porous scaffolds is important in bone tissue engineering techniques. To enhance efficiency, we modified the previously reported cell seeding techniques using low-pressure conditions. In this study, the effects of low pressure on bone marrow-derived stromal cells (BMSCs) of rats and the usefulness of the modified technique were assessed. There was no significant difference found in the proliferative and osteogenic capabilities among various low-pressure (50–760 mmHg, 1–10 min) conditions. To analyze the efficacies of the cell seeding techniques, BMSCs suspended in the plasma of rats were seeded into porous -tricalcium phosphate (-TCP) blocks by the following three procedures: 1) spontaneous penetration of cell suspension under atmospheric pressure (SP); 2) spontaneous penetration and subsequent low pressure treatment (SPSL), the conventional technique; and 3) spontaneous penetration under low pressure conditions (SPUL), the modified technique. Subsequently, these BMSCs/-TCP composites were used for the analysis of cell seeding efficiency or in vivo bone formation capability. Both the number of BMSCs seeded into -TCP blocks and the amount of bone formation of the SPUL group were significantly higher than those of the other groups. The SPUL method with a simple technique permits high cell seeding efficiency and is useful for bone tissue engineering using BMSCs and porous scaffolds.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Bone formation; Bone marrow-derived stromal cells (BMSCs); Cell seeding method; Low pressure; Porous scaffolds; Tissue engineering

Document Type: Research Article

Affiliations: Section of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan

Publication date: 2007-07-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more