Skip to main content

Intrasplenic Hepatocyte Transplantation Prolonged the Survival in Nagase Analbuminemic Rats With Liver Failure Induced by Common Bile Duct Ligation

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

It has already been established that hepatocyte transplantation (HTx) in animal models, such as both chemically and surgically induced acute liver failure, liver-based metabolic disease, and cirrhosis, resulted in significant improvement of liver function and survival. However, the efficacy of hepatocyte transplantation in secondary cholestatic liver disease is not well known. In this study, we transplanted hepatocytes into the spleen of Nagase analbuminemic rats (NARs) with common bile duct ligation (CBDL) to evaluate the function of transplanted hepatocytes by both of serum albumin levels and total bilirubin levels. CBDL was carried out on NARs to induce liver failure. Lewis rat hepatocytes were transplanted in NARs 7 days after CBDL. Animals, in groups of four, underwent the following interventions: group 1—intrasplenic transplantation of 30 × 106 primary Lewis rat hepatocytes in NARs with CBDL (n = 4), group 2—intrasplenic injection of 0.5 ml DMEM in NARs with CBDL (n = 4); group 3—CBDL only (n = 4); group 4—intrasplenic transplantation of 30 × 106 primary Lewis rat hepatocytes in NARs (n = 4). Both bilirubin levels and albumin levels in NARs with CBDL were significantly improved post-HTx. Animals receiving hepatocyte transplantation survived longer than animals in nontransplant control groups. This study indicates that hepatocytes can be transplanted to temporarily provide life-supporting liver-specific metabolic function and prolong the survival in recipient rats with liver failure induced by CBDL.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Hepatocyte transplantation; Jaundice; Nagase analbuminemic rats (NARs)

Document Type: Research Article

Affiliations: 1: Department of Surgery, Fujita-Health University, Toyoake, Aichi, Japan 2: Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA

Publication date: 2007-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more