An Immortalized Rat Ventral Mesencephalic Cell Line, RTC4, Is Protective in a Rodent Model of Stroke

$79.00 plus tax (Refund Policy)

Buy Article:

Abstract:

One therapeutic approach to stroke is the transplantation of cells capable of trophic support, reinnervation, and/or regeneration. Previously, we have described the use of novel truncated isoforms of SV40 large T antigen to generate unique cell lines from several primary rodent tissue types. Here we describe the generation of two cell lines, RTC3 and RTC4, derived from primary mesencephalic tissue using a fragment of mutant T antigen, T155c (cDNA) expressed from the RSV promoter. Both lines expressed the glial markers vimentin and S100, but not the neuronal markers NeuN, MAP2, or -III-tubulin. A screen for secreted trophic factors revealed substantially elevated levels of platelet-derived growth factor (PDGF) in RTC4, but not RTC3 cells. When transplanted into rat cortex, RTC4 cells survived for at least 22 days and expressed PDGF. Because PDGF has been reported to reduce ischemic injury, we examined the protective functions of RTC4 cells in an animal model of stroke. RTC4 or RTC3 cells, or vehicle, were injected into rat cortex 15–20 min prior to a 60-min middle cerebral artery ligation. Forty-eight hours later, animals were sacrificed and the stroke volume was assessed by triphenyl-tetrazolium chloride (TTC) staining. Compared to vehicle or RTC3 cells, transplanted RTC4 cells significantly reduced stroke volume. Overall, we generated a cell line with glial properties that produces PDGF and reduces ischemic injury in a rat model of stroke.

Keywords: Ischemia; Platelet-derived growth factor (PDGF); Stroke; Transplantation; Ventral mesencephalon

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/000000007783464984

Affiliations: 1: Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, USA 2: Cellular Neurobiology Research Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, USA 3: †Cellular Neurobiology Research Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, USA

Publication date: May 1, 2007

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more