Skip to main content

The Effect of Truncated Human α-Synuclein (1–120) on Dopaminergic Cells in a Transgenic Mouse Model of Parkinson's Disease

Buy Article:

$79.00 plus tax (Refund Policy)

Abstract:

α-Synuclein is thought to play an important role in the pathology of Parkinson's disease (PD). Truncated forms of this protein can be found in PD brain extracts, and these species aggregate faster and are more susceptible to oxidative stress than the full-length protein. We investigated the effect of truncated α- synuclein on dopaminergic cells using a transgenic mouse expressing α-synuclein (1–120) driven by the rat tyrosine hydroxylase promoter on a mouse α-synuclein null background. We found a selective reduction in the yield of dopaminergic cells from transgenic embryonic ventral mesencephalic cell cultures. However, in vivo the substantia nigra/ventral tegmentum dopaminergic cell counts were not reduced in transgenics, although these mice are known to have reduced striatal dopamine. When transplanted to the striatum in the unilateral 6-hydroxydopamine-lesioned mouse model of PD, dopaminergic cells derived from transgenic embryonic ventral mesencephala were significantly smaller at 6 weeks, and showed a trend towards being less effective at ameliorating rotational asymmetry than those from control α-synuclein null mice. These results suggest that α-synuclein (1–120) renders dopaminergic cells more susceptible to stress, which may have important implications as to how this truncated protein might contribute to dopaminergic cell death in sporadic PD.

Keywords: Dopamine; Parkinson's disease; Transplant; α-Synuclein

Document Type: Research Article

DOI: https://doi.org/10.3727/000000007783464911

Affiliations: Department of Clinical Neuroscience, University of Cambridge and Cambridge Centre for Brain Repair, Cambridge, CB2 2PY, UK

Publication date: 2007-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more