Skip to main content

Plasticity of the Central Nervous System and Formation of “Auxiliary Niches” After Stem Cell Grafting: An Essay

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

It is hoped that stem cell biology will play a major role in the treatment of a number of so far incurable diseases via transplantation therapy. Today, we know that neural stem cell grafts not only represent a valuable source of missing cells and molecules for the host nervous system, but they also bring with them biological principles and processes assuring tissue plasticity and homeostasis found in early development and in postnatal neurogenic areas. In this review, we discuss the potential of grafted neural stem/progenitor cells to induce plasticity in the adult diseased brain by mimicking the cellular and molecular processes governing the biology of endogenous stem cell niches. If confirmed, such anlagen of “auxiliary niches” could help us to optimize intercellular communication in donor cell-initiated networks of graft–host interactions and to “rejuvenate” the adult nervous system in its response to disease and injury.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Development; Homeostasis; Neurodegeneration; Neurogenesis; Neuroprotection; Neurotransplantation; Progenitor; Rescue

Document Type: Review Article

Affiliations: Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA

Publication date: 01 March 2007

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more